Additive hazards regression and partial likelihood estimation for ecological monitoring data across space
نویسندگان
چکیده
منابع مشابه
Additive hazards regression and partial likelihood estimation for ecological monitoring data across space.
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregressi...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملLocal Partial - Likelihood Estimation for Lifetime Data
This paper considers a proportional hazards model, which allows one to examine the extent to which covariates interact nonlinearly with an exposure variable, for analysis of lifetime data. A local partial-likelihood technique is proposed to estimate nonlinear interactions. Asymptotic normality of the proposed estimator is established. The baseline hazard function, the bias and the variance of t...
متن کاملHigh-Dimensional Sparse Additive Hazards Regression
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood appr...
متن کاملPenalized additive regression for space-time data: a Bayesian perspective
We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects withi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Its Interface
سال: 2012
ISSN: 1938-7989,1938-7997
DOI: 10.4310/sii.2012.v5.n2.a5